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NATURAL-CONVECTION ON A FINITE-SIZE 

HORIZONTAL PLATE* 
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Ahslraet-The problem of two-dimensional, steady-state, natural-convection on a finite-size, isothermal, 
horizontal plate is examined theoretically for the case in which a cold plate faces upwards or a hot plate faces 
downwards. The boundary layer equations of continuity, energy and momentum am solved using an 
integral analysis in order to determine the heat transfer at the plate surface. An essential part of this analysis 
is the use of the concept or condition that the boundary layer depth at the plate edge is equal to a critical 
depth. The results of this analysis agree very well with the existing experimental correlation equation for air. 
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NOMENCLATURE 

plate width; 
acceleration of gravity; 
Grashof number, L3g/IATW/v2 ; 
thermal conductivity ; 
plate half length ; 
mass flow rate ; 
Nusselt number, hL/k; 
pressure ; 
pressure of surroundings ; 
Prandtl number, c&k ; 
heat transfer ; 
dimensionless boundary layer depth; 
temperature ; 
temperature of surroundings; 
wall or plate temperature ; 
horizontal and vertical velocity com- 
ponents ; 
horizontal and vertical coordinate 
axes ; 
dimensionless coordinate ; 
reference height ; 

* This work was supported in part by the National 
Aeronautics and Space Administration under grant number 
NGR4I-006433. 

t Currently with the Aerothermodynamics Section, 
General Dynamics, Fort Worth, Texas. 

thermal diffusivity ; 
elliptic integral argument, or coefficient 
of thermal expansion ; 
boundary layer depth ; 
critical depth at the plate’s edge; 
depth at the plate center ; 
dimensionless boundary layer depth, 
equation (11) ; 
viscosity ; 
kinematic viscosity ; 
density ; 
density of surroundings. 

INTRODUCTION 

A THEORETICAL investigation of the twodimen- 
sional, steady-state, free-convection boundary 
layer on a finite-size, isothermal, horizontal 
plate is described in this paper. More specifically, 
the problem of interest is that of either a cold 
plate facing upwards or a hot plate facing 
downwards; the same physical phenomena 
occurs in both cases. For convenience, a cold 
plate facing upwards will be considered (see 
Fig. 1). Referring to Fig. 1, as the fluid near the 
surface is cooled by the cold wall it becomes more 
dense than the surrounding fluid and tends to 
accumulate on the plate’s surface. This denser 
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fluid flows across the plate, under the influence 
of a hydrostatic pressure gradient, and off the 
edges. Thus, under steady-state conditions a 
natural convection boundary layer is established 
that has a maximum depth at the plate’s 

Streamlines 

FIG. 1. Natural convection boundary layer on a finite-size 
horizontal plate. 

center and decreases to a critical depth (see 
Appendix A) at the edges. The mass flow rate 
within the boundary layer increases from zero 
at x = 0 to a maximum value at the edge of the 
plate. Figure 1 shows typical velocity distribu- 
tions through the boundary layer, u(y), at 
different positions along the plate’s surface. 

p(uE+v$)= -g+p$, (la) 

y-momentum 

This problem has been studied experimentally 
by Weise [l] and Grifftths and Davis [2] and 
theoretically by Suriano and Yang [3]. Reference 
[4] gives a correlation of the existing experi- 
mental data Suriano and Yang used a numerical 
(finite-difference) method to solve the equations 
describing the two-dimensional, free-convec- 
tion flow held in the vicinity of a finite-size, 
horizontal plate for the case of relatively small 
Rayleigh numbers. 

continuity 

(lb) 

energy 

au au 
+--0, ax ay 

aT aT a2T 
uax+vy=ctdy2. (14 

The purpose of this paper is to describe the 
behaviour of the free-convection boundary layer 
on a finite-size, horizontal, cold plate facing 
upward (or a hot plate facing downward) for 
the case of large Rayleigh or Grashof numbers. 

The order-of-magnitude analysis in Appendix B 
shows that equations (1) adequately describe 
the boundary-layer behavior when (c~/L)~ < 0.1 
which corresponds to conditions of Gr and 
GrPr2 > 10’. The x- and y-momentum equa- 
tions can be combined to yield 

An investigation [S] of the possibility of ob- 
taining a similar solution to the equations 
which describe this free convection boundary 
layer has shown that a similarity transforma- 
tion cannot be found by current methods [6, 71 
which will satisfy the boundary conditions of 
the problem. The present paper, therefore, 

T,)dy + vg (2) 
Y 

if the density variation is considered to affect 
only the bouyancy term. The boundary condi- 
tions are 

at y = 0, u = v = 0, and T = TM. = const.. 

describes an integral analysis of the equations 
of continuity, momentum and energy, which 
describe this particular problem A very import- 
ant part of this analysis is the use of the concept 
or condition that a critical boundary-layer depth 
exists at the plate’s edges (see Appendix A). 

ANALYSIS 

It is shown in Appendix B that, for large 
values of Gr and GrPr’ and corresponding 
small values of (S/J~)~, the two-dimensional, 
steady-state, free-convection, boundary layer 
on a horizontal plate can be described by the 
following equations : 
x-momentum 
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au aT 
asy-,co,u-+O,T-rT,,--0,--o, 

ay ay 

andatx = O,u(y) = 0. (3) 

If the continuity equation (lc) is combined 
with the energy (Id) and the momentum (2) 
equations and the results integrated with respect 
to y from y = 0 to y = 6, the following relations 
are obtained : 

-&/u2dy = - vr;).. 

0 

d 

-& u(T-T,)dy= -a i: 
0 w 

0 

W 

Equations (4a) and (4b) represent the integral 
form of the momentum and energy equations, 
including the continuity equation, which des- 
cribe the free convection boundary layer on a 
horizontal plate. 

Suitable approximate expressions [S] for the 
velocity, u, and temperature, T distributions 
within the freeconvection boundary layer and 
which satisfy the boundary conditions given 
by equations (3) are 

where U is a function of x which has the dimen- 
sions of velocity and is to be determined. With 
the above expressions for u and ‘I; equations (4a) 
and (4b) become 

&-&(U’s)=~+~S$ (6a) 

6 & (U6) = 60a. 

Equations (6) are two first order, nonlinear 
differential equations which must be solved 
simultaneously. A particular or physically 
reasonable solution of these equations, there- 
fore, requires two boundary conditions, one 
of which corresponds to the condition of 
symmetry at x = 0, i.e. 

U(0) = 0, or g(O) = 0. 

A slight rearrangement of equations (6) will 
show that U = 0 when dd/dx = 0; these are 
the physical conditions which must exist at the 
plate center. 

The second boundary condition involves the 
boundary layer depth at the plate’s edge. This 
depth was established by application of a 
minimum mechanical energy principle [S, 91, 
such as that used in openchannel hydraulics. 
The principle states that a fluid flowing across a 
horizontal plate under the influence of a hydro- 
static pressure gradient and off the plate’s edge 
will adjust itself so that the flow rate of mech- 
anical energy within the fluid will be a minimum 
with respect to the boundary-layer depth at the 
plate’s edge. Although this principle has in the 
past been applied to flows with a free surface, 
its application to the horizontal plate, free- 
convection, boundary layer is a plausible exten- 
sion not inconsistent with the boundary layer 
assumption itself The application of the above 
principle (see Appendix A) yields the following 
result for the boundary-layer depth, to be called 
the critical depth, 6, at the plate’s edge : 

Equation (8) can be expressed in a more con- 
venient form if the mass flow rate, A$, is ex- 
pressed as 

d 

Iii= pubdyzF= 
s 

pUb6 
Spba 
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where equations (51) and (6b) have been used. 
By combining equations (8) and (9) the condi- 
tion at the plate’s edge becomes 

e = - ~~~~~ tidx= ,,,A,l(F (12) 

fl ‘w 0 

* where equation (5b) was used. The Nusselt 
number based on the plate half length, L, can 
be expressed as 

. 00) 

If nondimensional variables, 3, U and 2, are 
defined as 0 

where Gr IS the dimensionless Grashof number 

8 = S/P‘, 55 = X/L, that is defined as 

B = U~~~~g~A~~/(6~~~~, GP = ~3~~~T~~~~. 

Equations (6) and boundary conditions (7) and 
The solution of equations (11) was accom- 

(10) can be expressed as 
plished through the use of a double precision 
Adams-Moulton numerical integration method, 
The results of the calculations to determine 

(1 la) boundary layer depth distributions and depths 
at the plate center are given in Figs. 2 and 3. 

(I 1 b, 
Figure 4 gives the heat transfer in terms of the 
Nusselt number, equation (131, as a function of 
the Prandtl number. The results of Fig. 3 show 

D(Q) = 0, or -$) = 0, and (1 lcj that conditions of GrPr’ > 5 x 1056~-wiH pro- 
duce boundary-layer depths (s&j2 < @l which 

r- /l \ 71 is consistent with the order-of-magnitude analy- 

fll4 
sis in Appendix B. 

The following sections describe solutions of 
equations (11) for two different conditions. 
First, a numerical solution is described of the 
equations in their present form (including the 
inertia term). Secondly, an analytical solution 
is described for the special case in which the 
inertia term in the momentum equation, 
d/dx(U%), can be neglected, i.e. for fluids that 
have large Prandtl numbers. These solutions 
are described below. 

Before continuing, consider the convective 
heat transfer, Q, to the wall which can be written I%. 2. Typical boundary layer depth distributions ..I 
analytically as including inertia terms. 
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FIG. 3. Boundary layer depth at the plate center 

18: 
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PI 

FIG. 4. Heat transfer. 

101 Ia2 

Fluids with large Prandtl number 
If the inertia term in equation (1 la), 

(d/dx)(U%), is neglected an analytical solution 
can be obtained. The justification of this 
simplification will be apparent upon comparison 
of the analytic results with the results of the 
numerical analysis just presented Neglecting, 
then, the inertia term in equation (1 la), equations 
(lla) and (llb) can be combined to yield 

8$ g =-1. 
( > 

Now with 

p=$, and dp= dp 
dx pds4’ 

(14) 

equation (14) can be integrated to yield 

!!L 
2 (15) 

In order to satisfy the condition that 
(dS/dZ)(o) = 0, it will be necessary at this point 
to assume that the boundary layer depth at the 
plate center is known, i.e. s(O) = &. Later, the 
value of 6, that is consistent with the critical 
depth at the plate’s edge, a,, will be obtained. 
Equation (15) is now expressed as 

(16) 

where the negative sign has been retained 
rather than the positive sign since G/d% must 
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be negative. Equation (16) is now integrated to 
yield 

or 

:zt[Ct(l - t3)f + 3Y0.25F(/?, K)] = :/ J6 

where t = S/8, and F(B, K) is an elliptic integral 
of the first kind, i.e. 

B s d4 
m K) = o (1 _ K2 sh2 (j)t 

and the arguments are 

p = cos-l (r::i:TE), K=sin(75”) 

The most simple procedure for evaluating 
equation (17) subject to the boundary condition 
(lld) is to (1) select a value of So, (2) compute 
the depth distribution, t(Z), and finally (3) 
determine, with the edge depth, 6,, and slope, 
(d/d&, from equations (17) and (16), the value 
of the Prandtl number, Pr, from boundary 
condition (1 Id) that is necessary for the com- 
puted edge depth and slope to represent a 
critical condition at the plate’s edge. Table 1 

Table 1. Depth, 8,, and slope, (G/d%),, at the plate’s edge 

80 Pi- & (d&!dx), 

0.885 14.2 0.358 7.18 
0.890 764 0.433 3.96 
0.900 4.175 0.520 2.226 
0,950 1,290 0.721 0.759 
1.000 0.715 0.836 0.451 
1.200 0,185 1.134 0.1455 
1,500 0.0526 1.475 0.0523 
2000 0.0119 1.992 0.01583 
5QOo 0~00012 4.999 oQoO4 

gives the results of calculations to determine 
the Prandtl number, Pr, and the boundary layer 
depth and slope at the plate’s edge, 8, and 
(G/d&, for various boundary layer depths at 

layer depth at the plate center as a function of 
Prandtl number and also gives a comparison 
with the numerically evaluated depth that 
includes the effects of the inertia term 

The Nusselt number [equation (13)] can be 
expressed as 

Nu = - 0.467 (Gr.Pr)+ 48; ; 
0 

(18) 
c 

where equation (14) has been integrated with 
respect to X from 2 = 0 to X = 1.0. With the 
depth, S,, and slope, (d@dX), at the plate’s edge 
given in Table 1, the Nusselt number has been 
computed and is given in Fig 4 as a function of 
the Prandtl number. Figure 4 also gives a 
comparison of the analytic results with the 
numerical results obtained using the complete 
equations, (1 la)-(l Id). 

The agreement between the results of the 
numerical analysis which includes the inertia 
term with the analysis that neglects this term is 
quite good, as shown by Figs. 3 and 4, especially 
for fluids that have Prandtl numbers greater 
than unity. 

For fluids with Prandtl numbers near unity, 
the Nusselt number can be expressed approx- 
imately as (see Fig. 4) 

Nu = 044 (Gr . Pr)*. (19) 

Figure 5 gives a comparison of the present 
theory, equation (19) with a correlation [4] of 
appropriate experimental measurements for air. 
It is seen that equation (19) agrees relatively 
well with the experimental correlation equation 
within the range of Gr for which the experimental 
correlation is valid, i.e. lo5 < Gr < 10’. 

CONCLUSION 

A physically reasonable and relatively 
accurate theory for the steady-state, two-dimen- 
sional, natural convection boundary layer on a 
finite-size, isothermal, horizontal plate for the 
cases of either a cold plate facing upward or a 
hot plate facing downward has been described. 
An essential point in this theory is the use of the 

the plate center, c!I~. Figure 3 shows the boundary condition that the boundary layer depth at the 



NATURAL-CONVECTION ON A FINITE-SIZE HORIZONTAL PLATE 1579 

Experimental Correhtiofl 

Reference [41 

lop 10’ 100 109 

Gr.Pr 

RG. 5. Comparison of theory with experimental correlation 
equation for air. 

plate edge is equal to the critical depth that is 
described in Appendix A. 
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APPENDIX A 

Boundary Layer Depth at the Plate Edge 
The analysis of many boundary layer prob- 

lems is considerably simplified by the condition 
that the boundary layer depth is zero at some 
conveniently defined point, such as the leading 

edge of the plate. This simplification is not 
possible in the analysis of the free-convection 
boundary layer which flows, under the influence 
of a hydrostatic pressure gradient, across a 
finite-size, horizontal plate i.e. the boundary 
layer depth is greater than zero over the entire 
plate (see Fig 1). Therefore, the objective of this 
appendix is to define a characteristic depth for 
the natural-convection layer on a finite-size, 
horizontal plate. In order to accomplish this 
objective, the principle of a minimum or critical 
depth which is a well established part of the 
theory of open channel hydraulics, will be 
employed [9, lo]. Although, in the past this 
principle has been applied exclusively to the 
determination of the critical depth of liquids, 
with a free surface, flowing in open channels 
under the influence of a hydrostatic pressure 
gradient, a plausible extension may be made to 
the case of the free convection boundary layer 
flowing over a horizontal plate under a density 
stratified hydrostatic pressure gradient. This 
extension is certainly consistent with the assump- 
tion that a boundary layer approximation may 
be utilized in such a problem. In this Appendix, 
this extension is made, following the arguments 
of Bakhmeteff [9] to establish the boundary 
layer depth at the plate’s edge. 

The desired characteristic depth can be 
defined by examining the flow of mechanical 
energy within the boundary layer in connection 
with the postulate that there is a natural 
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tendency for the denser fluid to seek a minimum 
depth consistent with the external conditions 
of the problem. In general the steady state con- 
servation of mechanical energy of an incom- 
pressible fluid flowing through a stationary 
control volume can be expressed as [ 11) 

-j+%).dS - j(r V).VdR (A.l) 

s R 

where E dS and r represent the velocity vector, 
differential area vector on the surface of the 
control volume, R, and viscous stress tensor 
respectively. The first term on the right hand 
side of equation (A.l) represents the work, W, 
done by viscous forces to push the fluid into or 
out of the system, while the second term, @, 
represents the viscous dissipation of energy. 
Recall that equation (A. 1) is a result of perform- 
ing the scalar product of the velocity vector, E 
and the general momentum equation in vector 
form and is therefore strictly a mechanical 
energy equation; thermodynamic concepts have 
not been included in this equation. This equation 
must be satisfied independent of thermal energy 
considerations ; it is coupled with the general 
energy equation only if the density and viscosity 
are temperature dependent. 

Applied to a control volume enclosing a thin 
(Appendix B) free-convection boundary layer 
on a horizontal, finite-size plate, equation (A.l) 
becomes 

where 

B = 8, - (w+ CD), (A.2) 

EC (A.3) 

Cl 

and 
X 

8, = 
s( 

f + gS, + p,,/p pvbdx. (A.4) 
1 

0 

Equation (A.2) states simply that the rate at 

which mechanical energy flows in the boundary 
layer, l?, at a given position, x, along the plate 
is equal to the rate at which mechanical energy 
flows into the boundary layer through the 
exposed edge of the boundary layer, _&, minus 
the energy lost due to viscous work and viscous 
dissipation. For a thin boundary layer, the 
kinetic energy term in &, can be neglected since 
U2 < u2, and the mechanical energy equation 
can be expressed per unit mass as 

BJti = e = e, - (W + @)/Ii4 (A.5) 

where e, = pa/p + 96, is constant and ni is the 
mass flow rate in the boundary layer defined 
by equation (9). 

Now examine the average specific mechanical 
energy flowing at a given position x in the 
boundary layer, _I?/& = e. The hydrostatic 
pressure can be defined as (see Fig. A. 1) 

P = PO + pog@o - 6) + ipgdq’ (A.61 
J 

and for small temperature variations the fluid 
density can be expressed as 

p = Po[l - PU- To)]. (A.7) 

Further, the velocity and temperature distribu- 
tions within the boundary layer are assumed to 
be given by 

(AS) 

. 

If equations (A.6)-(A.8) are substituted in equa- 
tion (A.3) and the indicated integration per- 
formed, the average specific mechanical energy 
flowing past a given position x in the boundary 
layer can be expressed as 

(e - ~6, - PO/P)&- = 2 
w 

54 &I* =--- -- 
SgfiAT, p2b2d2 

+ 6. (A.9) 
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The variation of specific mechanical energy e 
or e with 6 is illustrated in Fig. A.l. For a given 
value of mass flow rate, ti, Fig. A.1 shows 
that as the fluid moves from section (a) to (b) 
the loss in mechanical energy, e, due to viscous 
dissipation and viscous work, corresponds to a 
decrease in the boundary layer depth Note in 
Fig. A.1 that the natural tendency of the liquid 

FIG. A.l. Variation of boundary layer depth with specific 
mechanical energy. 

depth to decrease is limited to a minimum value, 
known as the critical depth, 6,. Any further 
reduction in depth below 6, would be possible 
only if external mechanical energy were added 
to the boundary layer. Therefore, the critical 
depth is the lowest depth to which the boundary 
layer may drop in the natural process of 
dissipating energy. 

In order to select a preferred depth from the 
infinite number of possible depths shown in 
Fig. A.1 it is necessary to use the postulate that 
there is a natural tendency for the denser fluid 
within the boundary layer to seek a minimum 
depth consistent with the external conditions 
of the problem, i.e. the denser fluid tends to flow 
off the plate. With this postulate, and because 
of the continuous reduction in depth in the flow 
direction, the minimum or critical depth estab- 
lishes itself at the plate edge. The upstream depth 
distribution will adjust itself in a manner 
consistent with the critical depth at the plate edge 
and the external conditions of the problem. 

Note that the critical depth corresponds to the 
condition of minimum specific mechanical 
energy at the plate edge. Thus the critical depth 
can be evaluated by setting the derivative of e 
or 2 [equation (A.9)] with respect to 6 equal to 

zero, and solving the resulting expression for 
6,, thus 

(A. 10) 

where A& represents the mass flow rate within 
the boundary layer at the plate edge. 

Beij [12] has shown experimentally that the 
above argument is applicable to a variable mass 
flow rate across the plate providing ni, in 
equation (A. 10) represents the mass flow rate at 
the plate edge. An extensive experimental study 
by Beij shows excellent agreement between 
measured and predicted (using the above critical 
depth principle) liquid depths at the free end of 
horizontal channels for both constant and 
spatially variable steady flow. 

Therefore, the minimum or critical depth at 
the plate edge is considered to be defined by 
the expression 

= 0. (A.ll) 

This expression is valid for the steady flow of thin 
fluid layers (including boundary layers in which 
the vertical component of velocity, u, is small 
compared with the horizontal component, U) 
across a horizontal plate under the influence of 
a hydrostatic pressure gradient and off the 
plate’s free edge. 

APPENDIX B 

Order-of-Magnitude Analysis 
The equations which describe the steady- 

state, two-dimensional, motion (natural-con- 
vection) of a constant property fluid across a 
finite-size, horizontal plate are 
x-momentum 

at4 au 
u-+v-_= 
ax ay 

y-momentum 

a0 au 
udx+vay 

(B.2) 
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energy (neglecting viscous dissipation of energy) 

conti~ity 

!?!+%L, 
ax ay 

(B-4) 

The objective of this Appendix is to demonstrate 
the conditions under which the above equations 
can be simplified by neglecting terms that have a 
smaller order-of-magnitude effect on the results 
than that of the terms being retained. 

If the variables u, u, ?; x and y are made non- 
dimensional and of order unity by appropriate 
reference velocities, tem~ratures and lengths, 
the nondimensional derivatives will also be of 
order unity and therefore the influence of each 
term in the above equations will depend on the 
magnitude of its coefficients. 
sional variables are defined as 

T- To T- To 
@=T_.T=-&- 

w 0 w 

The- nondimen- 

The quantities x,7 and C# are obviously of order 
unity. Special consideration, however, must be 
given to the selection of representative reference 
velocities U, and V, so that u and 6 will also be of 
order unity. 

Since the mass flow rate in the x-direction 
increases from a value of zero at the plate center 
to a maximum value at the plate edge (see Fig. 1) 
a representative horizontal reference velocity is 
the average horizontal velocity of the fluid at the 
plate edge. This horizontal reference velocity is 
easily obtained by applying a momentum 
balance in the x-direction to the fluid located 
above the plate and between vertical boundaries 
at x = 0 and x = L,. If viscous forces are neg- 
lected and the net driving force is equal to the 
integral of the excess hydrostatic pressure along 
the vertical boundary at x = 0 due to the denser 
fluid near the plate, an upPer limit on the average 

A. J. CHAPMAN 

horizontal velocity at the plate edge can be 
expressed as 

u, z J(sPAT,~o/W. (B.5) 

A mass balance applied to the control volume 
shown in Fig. 1 yields the following representa- 
tive vertical reference velocity 

V, = u,6,/L I fB.6) 

With the nondimensional variables defined in 
equations (B.5) and (B.6), the nondimensional 
form of equations (B. lHB.4) are 
x-momentum 
-au -au 1 dP uz+vz= -pu,zz 

y-~rne~urn 

- -=(l - ,$ATw~) 
PAT, ’ 

(B.8) 

[($!!$ + $1 (B.9) 

continuity 

aii ai + ---z. = 0. Z ay (B. 10) 

In the above nondimensional equations all 
dependent variables and their derivatives are of 
order unity, and the influence of each term 
depends on the magnitude of its coefficient. If 
(So/L)2 < @l, and the terms that have an order- 
of-magnitude of 0.1 or less are neglected the 
above equations can be simplified to the form 
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x-momentum 

-au -au 

uz+Q7= 

1 ap -~- 
~24; ax 

10 + L ()O * a5 

+Gr s, 27 (B.ll) 

y-momentum 

1 ap -- = - x(1 - BAT,& (B.12) 

PU,~ 6 BATW 

energy 

continuity 

(B.14) 

The simplified x- and y-momentum equations 
can be combined to yield 

Y 

;a”+$!!!=lO?? 

(B.15) 

Note that the first terms in equation (B.15) 
are of order unity or greater. Since the viscous 
term in the momentum equation and the con- 
duction term in the energy equation must be of 
order unity near the wall, the coeffkients 

must also be of order unity. Therefore if (S,/L)2 
< 0.1, the parameters Gr and GrPr’ must be of 
order lo5 or larger. 

These restrictions (Gr and GrPr’ > 105) repre- 
sent a lower limit on the conditions under which 
equations (B. 13)-(B. 15) adequately describe the 
behavior of the free-convection boundary layer 
on a horizontal plate. Equations (B. 13)-(B. 15) 
will more accurately describe the boundary- 
layer behavior as Gr and GrPr’ + co and the 
corresponding boundary-layer depth, 6,/L --f 0. 

R&&Le probleme de la convection naturelle bidimensionnelle en regime permanent sur une plaque 
horizontale isotherme de taille time est examine theoriquement dans le cas ou une plaque regarde vers 
le haut ou bien une plaque chaude regarde vers le bas. Les equations de la couche limite pour la continuite, 
l’energie et la quantiM de mouvement sont rbsolues en employant une analyse inttgrale afin de determiner 
le transport de chaleur il la surface de la plaque. Une part essentielle de cette analyse est l’emploi du concept 
ou de la condition que la profondeur de la couche limite au bord de la plaque est &ale a une profondeur 
critique. Les rtsultats de cette analyse sont en tr6s bon accord avec l’tquation de correlation experimentale 

existante pour pair. 

IUATURLICHE KONVEKTION AN EINER ENDLICHEN WAAGERECHTEN PLATTE 

Znsammenfassang-Das Problem der zweidimensionalen, stationiiren, freien Konvektion an einer end- 
lichen, isothermen, waagerechten Platte wird theoretisch gepriift Rlr den Fall, dass eine kalte Seite nach 
oben oder eine heisse Seite nach unten gerichtet ist. Die Grenzschichtgleichungea filr Kontinuitiit, Energie 
und Impuls werden mit Hilfe einer Integralanalyse gel&t urn den Wllrmetibergang an der Plattenober- 
l&he zu bestimmen. Ein wesentlicher Teil dieser Analyse besteht in der Redingung dass die Grenzschicht- 
tiefe am Plattenrand gleich einer kritischen Tiefe ist. Die Ergebnisse dieser Analyse stimmen sehr gut 

mit bestehenden experimentellen Korrelationsgleichungen fiir Luft &rein. 

AtiaoTaqHx-sagasa J(BYMePHOti CTal(HOH3PHOi WTeCTBeHHOti KOHBE!KUHII H3J’YEE!TCH 

T3Op3TkiWCKH AJlfl CJlyYaFl rOpH30HTaJlbHOlt H3OT3pMWleCKOti XOJIOAHOt IlJlaCTkIHbI KOHNHblX 

p33MepOB, p3CtlOJlOHteHHO~ BBepXy, II aH3JlOIWIHOi l-OpHW8 llJI3CTHHbl, p3CIlOJlOHW?HHOti 

BHI13Y. Tennoo6meH Ha IlOBt?pXHOCTH ~Jl3CTHHbl Onpt!~3~RnCH IIyTWd PeIIEHkiH Anfi norpaans- 
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HOI-0 CJIOR ~eTO~aM~i ~~~Terp~~bHbIX npe~6pa3OBaH~~ YpaBHeH~~ Hepa3~~BHOcT~l. 3HeplYkIH 

EI Ko~HsecTsaAsa~eHrtrr.3TaaaAasaperueHanpM TOM c~~ecTBeHHoM yczoswfs,s~o Toxmma 
nOrpaHEqHOr0 CJI~R wa Hpam nzacTmm pama KpETmeCKo%. PeaynbTaTM aaanma 09eHb 

xopou10 CornacyIOTCFi C 3fMeIOIIJHMHCfi 3KCIIepHMeHTaJlbHbiMH 0606UIeHHbIMH ypaBHeHHRMZ4 


