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Abstract—The problem of two-dimensional, steady-state, natural-convection on a finite-size, isothermal,
horizontal plate is examined theoretically for the case in which a cold plate faces upwards or a hot plate faces
downwards. The boundary layer equations of continuity, energy and momentum are solved using an
integral analysis in order to determine the heat transfer at the plate surface. An essential part of this analysis
is the use of the concept or condition that the boundary layer depth at the plate edge is equal to a critical
depth. The results of this analysis agree very well with the existing experimental correlation equation for air.

NOMENCLATURE

b, plate width;

g, acceleration of gravity;
Grashof number, [’gpAT, /v?;
k, thermal conductivity;

L, plate half length;

mass flow rate;

Nusselt number, hL/k;

P, pressure ;

Po  pressure of surroundings;

Pr,  Prandtl number, c,u/k;
0O, heat transfer;
L, dimensionless boundary layer depth;

T, temperature;
Ty,  temperature of surroundings;

T,, wall or plate temperature;

u,v, horizontal and vertical velocity com-
ponents;

x,y, horizontal and vertical coordinate
axes;

X, dimensionless coordinate ;

Vo,  reference height;

* This work was supported in part by the National
Aeronautics and Space Administration under grant number
NGR-44-006-033.

t Currently with the Aerothermodynamics Section,
General Dynamics, Fort Worth, Texas.

o, thermal diffusivity;
\ elliptic integral argument, or coefficient
of thermal expansion;
0, boundary layer depth;
0., critical depth at the plate’s edge;
d¢,  depth at the plate center;
S, dimensionless boundary layer depth,

equation (11);
U viscosity;
v, kinematic viscosity ;

P, density;
density of surroundings.

INTRODUCTION

A THEORETICAL investigation of the two-dimen-
sional, steady-state, free-convection boundary
layer on a finite-size, isothermal, horizontal
plate is described in this paper. More specifically,
the problem of interest is that of either a cold
plate facing upwards or a hot plate facing
downwards; the same physical phenomena
occurs in both cases. For convenience, a cold
plate facing upwards will be considered (see
Fig. 1). Referring to Fig. 1, as the fluid near the
surfaceis cooled by the cold wall it becomes more
dense than the surrounding fluid and tends to
accumulate on the plate’s surface. This denser
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fluid flows across the plate, under the influence
of a hydrostatic pressure gradient, and off the
edges. Thus, under steady-state conditions a
natural convection boundary layer is established
that has a maximum depth at the plate’s
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FiG. 1. Natural convection boundary layer on a finite-size
horizontal plate.

center and decreases to a critical depth (see
Appendix A) at the edges. The mass flow rate
within the boundary layer increases from zero
at x = 0 to a maximum value at the edge of the
plate. Figure 1 shows typical velocity distribu-
tions through the boundary layer, u(y), at
different positions along the plate’s surface.

This problem has been studied experimentally
by Weise [1] and Griffiths and Davis {2] and
theoretically by Suriano and Yang[3]. Reference
[4] gives a correlation of the existing experi-
mental data. Suriano and Yang used a numerical
(finite-difference) method to solve the equations
describing the two-dimensional, free-convec-
tion flow field in the vicinity of a finite-size,
horizontal plate for the case of relatively small
Rayleigh numbers.

The purpose of this paper is to describe the
behaviour of the free-convection boundary layer
on a finite-size, horizontal, cold plate facing
upward (or a hot plate facing downward) for
the case of large Rayleigh or Grashof numbers.

An investigation [5] of the possibility of ob-
taining a similar solution to the equations
which describe this free convection boundary
layer has shown that a similarity transforma-
tion cannot be found by current methods [6, 7]
which will satisfy the boundary conditions of
the problem. The present paper, therefore,
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describes an integral analysis of the equations
of continuity, momentum and energy, which
describe this particular problem. A very import-
ant part of this analysis is the use of the concept
or condition that a critical boundary-layer depth
exists at the plate’s edges (see Appendix A).

ANALYSIS

It is shown in Appendix B that, for large
values of Gr and GrPr? and corresponding
small values of (d/L)?, the two-dimensional,
steady-state, free-convection, boundary layer
on a horizontal plate can be described by the
following equations:

X-momentum

<u‘_33+ v@>~— L
ot %)= “ax T He 1
y-momentum
op
F i pol1 — B(T — To)]g, (1b)
y
continuity
ou oOv
houd LAY
O M (1c)
energy
oT oT °T
U——+ Vv = A= (1d)

ox Oy dy

The order-of-magnitude analysis in Appendix B
shows that equations (1) adequately describe
the boundary-layer behavior when (6/L)* < 0-1
which corresponds to conditions of Gr and
GrPr? > 10°. The x- and y-momentum equa-
tions can be combined to yield

ou du i 0 &u

— — = —(T— T,)d — (2

uax+vay gﬂj\ax( O)y+v8y2 ()
¥y

if the density variation is considered to affect

only the bouyancy term. The boundary condi-

tions are

aty =0,u=v=0,and T= T, = const..
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u oT

FTR

asy »> o,u—0,T->T,

and at x = 0, u(y) = 3

If the continuity equation (1c) is combined
with the energy (1d) and the momentum (2)
equations and the results integrated with respect
toyfromy = 0toy = , the following relations
are obtained :

']
d ou
dxj Wy = - v(aJ’>w
0
éd O a
+ gﬂjHa—x(T— Tp) dy] dy, (4a)
0

8
d oT\
im0 = ().
0

Equations (4a) and (4b) represent the integral
-form of the momentum and energy equations,
including the continuity equation, which des-
cribe the free convection boundary layer on a
horizontal plate.

Suitable approximate expressions [8] for the
velocity, u, and temperature, T, distributions
within the free-convection boundary layer and
which satisfy the boundary conditions given
by equations (3) are

u = U% (1 - %)2 (5a)

T-T, _T-T,_ v\

T, — T
where U is a function of x which has the dimen-
sions of velocity and is to be determined. With
the above expressions for u and T, equations (4a)
and (4b) become

(4b)

2% 5% (6a)
dx

105 d

d
é a—;(U&) = 60a. (6b)
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Equations (6) are two first order, nonlinear
differential equations which must be solved
simultaneously. A particular or physically
reasonable solution of these equations, there-
fore, requires two boundary conditions, one
of which corresponds to the condition of
symmetry at x = 0, ie.
dé

Uu=0, or i 0= V)]
A slight rearrangement of equations (6) will
show that U = 0 when dd/dx = 0; these are
the physical conditions which must exist at the
plate center.

The second boundary condition involves the
boundary layer depth at the plate’s edge. This
depth was established by application of a
minimum mechanical energy principle [5, 9],
such as that used in open-channel hydraulics.
The principle states that a fluid flowing across a
horizontal plate under the influence of a hydro-
static pressure gradient and off the plate’s edge
will adjust itself so that the flow rate of mech-
anical energy within the fluid will be a minimum
with respect to the boundary-layer depth at the
plate’s edge. Although this principle has in the
past been applied to flows with a free surface,
its application to the horizontal plate, free-
convection, boundary layer is a plausible exten-
sion not inconsistent with the boundary layer
assumption itself. The application of the above
principle (see Appendix A) yields the following
result for the boundary-layer depth, to be called
the critical depth, é,, at the plate’s edge :

.
=)= (i) ®

p*b*gpAT,

Equation (8) can be expressed in a more con-
venient form if the mass flow rate, M, is ex-
pressed as
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where equations (5a) and (6b) have been used.
By combining equations (8} and (9) the condi-
tion at the plate’s edge becomes

,Ld \, §
4002 | |
5400 j‘ 6)
0
S o=

S Ry 10

If nondimensional variables, 6, U and x, are

defined as

o =38/, x=xL,

U = UJJ¥gBAT, (6vL)],
where

J = 1440. v*L?/(gBAT, Pr).

Equations (6) and boundary conditions (7} and
(10) can be expressed as

16d .. U .d
ﬁ@(lj 5}-—— ——5‘-"5&, (113}
d __
458§(U5)=1 (11b)
— dé
U =0, or E%(O)z(), and (lig)
3 ld' 2|*
- 57
Ly =9, = 3Pr j‘s‘ (11d)

[

The following sections describe solutions of
equations (11) for two different conditions.
First, a numerical solution is described of the
equations in their present form {including the
inertia term). Secondly, an analytical solution
is described for the special case in which the
inertia term in the momentum equation,
d/dx (U26), can be neglected, i.e. for fluids that
have large Prandtl numbers. These solutions
are described below.

Before continuing, consider the convective
heat transfer, 0, to the wall which can be written
analytically as
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L L

il dx
o0 kj (5?) bdx = kaAng 3
0 w

0

(12)

where equation (5b) was used. The Nusselt
number based on the plate half length, L, can
be expressed as

_ oL
" kAT,bL

1
= 0467(Gr- Pr)t [ %f (13)
o

where Gr 15 the dimensionless Grashof number
that is defined as

Gr = DgBAT, /v

Nu

Fluids with arbitraryPrandt! number—numerical
solution

The solution of equations (11) was accom-
plished through the use of a double precision
Adams-Moulton numerical integration method.
The results of the calculations to determine
boundary layer depth distributions and depths
at the plate center are given in Figs. 2 and 3.
Figure 4 gives the heat transfer in terms of the
Nusselt number, equation (13), as a function of
the Prandtl number. The results of Fig. 3 show
that conditions of GrPr? > 5 x 10%53 will pro-
duce boundary-layer depths (§/L)* < 0-1 which
is consistent with the order-of-magnitude analy-
sis in Appendix B.
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Fig. 2 Typical boundary layer depth distributions -

including inertia terms.
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Fluids with large Prandtl number

If the inertia term in equation (1la),
(d/dxXU?d), is neglected an analytical solution
can be obtained. The justification of this
simplification will be apparent upon comparison
of the analytic results with the results of the
numerical analysis just presented. Neglecting,
then, the inertia term in equation (11a), equations
(11a) and (11b) can be combined to yield

d (d&*
= (E) = -1 (14)
Now with
ds* dp dp
S R o

equation (14) can be integrated to yield
p_1

d54)2
2 2 (E

In order to satisfy the condition that
(dd/dx)o) = 0, it will be necessary at this point
to assume that the boundary layer depth at the
plate center is known, ie. 6(0) = J,. Later, the
value of §, that is consistent with the critical
depth at the plate’s edge, J,, will be obtained.
Equation (15) is now expressed as

b_-t
dx /6

where the negative sign has been retained
rather than the positive sign since d§/dx must

= _7453 +c¢ (15

56— 5 (16)
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be negative. Equation (16) is now integrated to
yield
3
dé  -x
j(SS—W -7 7

3o
or

3T — ) + 3O25F(B,K)] = %//6

where t = §/5, and F(B, K) is an elliptic integral
of the first kind, i.e.

B
F(8,K) =j dé

(1 — K2 sin’ @)

and the arguments are

(¥ -1+

f= cos (3* +1—z)’
The most simple procedure for evaluating
equation (17) subject to the boundary condition
(11d) is to (1) select a value of §,, (2) compute
the depth distribution, #(x), and finally (3)
determine, with the edge depth, 6., and slope,
(d6/dX),, from equations (17) and (16), the value
of the Prandtl number, Pr, from boundary
condition (11d) that is necessary for the com-
puted edge depth and slope to represent a
critical condition at the plate’s edge. Table !

K = sin (75°)

Table 1. Depth, 5., and slope, (d6/dX)., at the plate’s edge

8o Pr 3. (d3/dx),
0885 142 0-358 718
0-890 7-64 0433 396
0900 4175 0:520 2226
0950 1:290 0-721 0759
1-000 0715 0836 0451
1-200 0185 1-134 01455
1:500 00526 1-475 00523
2000 00119 1992 001583
5000 000012 4999 0:0004

gives the results of calculations to determine
the Prandtl number, Pr, and the boundary layer
depth and slope at the plate’s edge, §, and
(d3/dx),, for various boundary layer depths at
the plate center, 8,. Figure 3 shows the boundary
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layer depth at the plate center as a function of
Prandtl number and also gives a comparison
with the numerically evaluated depth that
includes the effects of the inertia term.

The Nusselt number [equation (13)] can be
expressed as

Nu = — 0467 (Gr-Pr)* 45} G—f«c_) (18)
where equation (14) has been integrated with
respect to X from X =0 to X = 1-0. With the
depth, &, and slope, (dd/dx),, at the plate’s edge
given in Table 1, the Nusselt number has been
computed and is given in Fig. 4 as a function of
the Prandtl number. Figure 4 also gives a
comparison of the analytic results with the
numerical results obtained using the complete
equations, (11a)}-(11d).

The agreement between the results of the
numerical analysis which includes the inertia
term with the analysis that neglects this term is
quite good, as shown by Figs. 3 and 4, especially
for fluids that have Prandtl numbers greater
than unity.

For fluids with Prandtl numbers near unity,
the Nusselt number can be expressed approx-
imately as (see Fig. 4)

Nu = 044 (Gr- Pr)*. (19)

Figure 5 gives a comparison of the present
theory, equation (19), with a correlation [4] of
appropriate experimental measurements for air.
It is seen that equation (19) agrees relatively
well with the experimental correlation equation
within the range of Gr for which the experimental
correlation is valid, ie. 10° < Gr < 107

CONCLUSION

A physically reasonable and relatively
accurate theory for the steady-state, two-dimen-
sional, natural convection boundary layer on a
finite-size, isothermal, horizontal plate for the
cases of either a cold plate facing upward or a
hot plate facing downward has been described.
An essential point in this theory is the use of the
condition that the boundary layer depth at the
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FiG. 5. Comparison of theory with experimental correlation
equation for air.

plate edge is equal to the critical depth that is
described in Appendix A.
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APPENDIX A

Boundary Layer Depth at the Plate Edge
The analysis of many boundary layer prob-
lems is considerably simplified by the condition
that the boundary layer depth is zero at some
conveniently defined point, such as the leading

edge of the plate. This simplification is not
possible in the analysis of the free-convection
boundary layer which flows, under the influence
of a hydrostatic pressure gradient, across a
finite-size, horizontal plate ie. the boundary
layer depth is greater than zero over the entire
plate (see Fig. 1). Therefore, the objective of this
appendix is to define a characteristic depth for
the natural-convection layer on a finite-size,
horizontal plate. In order to accomplish this
objective, the principle of a minimum or critical
depth which is a well established part of the
theory of open channel hydraulics, will be
employed [9, 10]. Although, in the past this
principle has been applied exclusively to the
determination of the critical depth of liquids,
with a free surface, flowing in open channels
under the influence of a hydrostatic pressure
gradient, a plausible extension may be made to
the case of the free convection boundary layer
flowing over a horizontal plate under a density
stratified hydrostatic pressure gradient. This
extension is certainly consistent with the assump-
tion that a boundary layer approximation may
be utilized in such a problem. In this Appendix,
this extension is made, following the arguments
of Bakhmeteff [9] to establish the boundary
layer depth at the plate’s edge.

The desired characteristic depth can be
defined by examining the flow of mechanical
energy within the boundary layer in connection
with the postulate that there is a natural
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tendency for the denser fluid to seek a minimum
depth consistent with the external conditions
of the problem. In general the steady state con-
servation of mechanical energy of an incom-
pressible fluid flowing through a stationary
control volume can be expressed as [11]

J(Z + gy + B) pV-dS =
2 e
S
-*J(V-r)'dg — J(r' V)-VdR  (A.])
S R

where ¥, dS and t represent the velocity vector,
differential area vector on the surface of the
control volume, R, and viscous stress tensor
respectively. The first term on the right hand
side of equation (A.1) represents the work, W,
done by viscous forces to push the fluid into or
out of the system, while the second term, &,
represents the viscous dissipation of energy.
Recall that equation (A.1) is a result of perform-
ing the scalar product of the velocity vector, V,
and the general momentum equation in vector
form and is therefore strictly a mechanical
energy equation ; thermodynamic concepts have
not been included in this equation. This equation
must be satisfied independent of thermal energy
considerations; it is coupled with the general
energy equation only if the density and viscosity
are temperature dependent.

Applied to a control volume enclosing a thin
(Appendix B) free-convection boundary layer
on a horizontal, finite-size plate, equation (A.1)
becomes

where
J
. u?
E= j (7 + gy + p/ﬂ) pubdy,  (A3)
0
and

X

2
E, = g (U? + géy + po/p> pvbdx. (A.4)

0]
Equation (A.2) states simply that the rate at

J. V. CLIFTON and A. J. CHAPMAN

which mechanical energy flows in the boundary
layer, E. at a given position, x, along the plate
is equal to the rate at which mechanical energy
flows into the boundary layer through the
exposed edge of the boundary layer, E,, minus
the energy lost due to viscous work and viscous
dissipation. For a thin boundary layer, the
kinetic energy term in E, can be neglected since
v? < u?, and the mechanical energy equation
can be expressed per unit mass as

EM=e¢=e, — (W + &M (AS)

where e, = po/p + g, is constant and M is the
mass flow rate in the boundary layer defined
by equation (9).

Now examine the average specific mechanical
energy flowing at a given position x in the
boundary layer, E/M =e The hydrostatic
pressure can be defined as (see Fig. A.1)

a
P = po+ pod(do — 0) + [ pgdy  (A6)
)

and for small temperature variations the fluid
density can be expressed as

p=poll — BT~ Ty}

Further, the velocity and temperature distribu-
tions within the boundary layer are assumed to
be given by

_y (Y
WU“éQ Q

(A7)

If equations (A.6)A.8) are substituted in equa-
tion (A.3) and the indicated integration per-
formed, the average specific mechanical energy
flowing past a given position x in the boundary
layer can be expressed as

21 _
(e — ydy — Po/P)m =
54 M?

__ 4 M
N

{A9)
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The variation of specific mechanical energy e
or e with ¢ is illustrated in Fig. A.1. For a given
value of mass flow rate, M, Fig. A.1 shows
that as the fluid moves from section (a) to (b)
the loss in mechanical energy, e, due to viscous
dissipation and viscous work, corresponds to a
decrease in the boundary layer depth. Note in
Fig. A.1 that the natural tendency of the liquid

Fig. A.1. Variation of boundary layer depth with specific
mechanical energy.

depth to decrease is limited to a minimum value,
known as the critical depth, . Any further
reduction in depth below &, would be possible
only if external mechanical energy were added
to the boundary layer. Therefore, the critical
depth is the lowest depth to which the boundary
layer may drop in the natural process of
dissipating energy.

In order to select a preferred depth from the
infinite number of possible depths shown in
Fig. A.1 it is necessary to use the postulate that
there is a natural tendency for the denser fluid
within the boundary layer to seek a minimum
depth consistent with the external conditions
of the problem, i.e. the denser fluid tends to flow
off the plate. With this postulate, and because
of the continuous reduction in depth in the flow
direction, the minimum or critical depth estab-
lishes itself at the plate edge. The upstream depth
distribution will adjust itself in a manner
consistent with the critical depth at the plate edge
and the external conditions of the problem.

Note that the critical depth corresponds to the
condition of minimum specific mechanical
energy at the plate edge. Thus the critical depth
can be evaluated by setting the derivative of e
or e [equation (A.9)] with respect to  equal to
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zero, and solving the resulting expression for

d,, thus
5 _ (108 M2 Y
° 5 p?bgpAT,

where M, represents the mass flow rate within
the boundary layer at the plate edge.

Beij [12] has shown experimentally that the
above argument is applicable to a variable mass
flow rate across the plate providing M, in
equation (A.10) represents the mass flow rate at
the plate edge. An extensive experimental study
by Beij shows excellent agreement between
measured and predicted (using the above critical
depth principle) liquid depths at the free end of
horizontal channels for both constant and
spatially variable steady flow.

Therefore, the minimum or critical depth at
the plate edge is considered to be defined by
the expression

']
b u? )
{%5 (? + gy + p/p pubdy}.

Mt

(A.10)

=0. (A11)

This expression is valid for the steady flow of thin
fluid layers (including boundary layers in which
the vertical component of velocity, v, is small
compared with the horizontal component, u)
across a horizontal plate under the influence of
a hydrostatic pressure gradient and off the
plate’s free edge.

APPENDIX B

Order-of-Magnitude Analysis
The equations which describe the steady-
state, two-dimensional, motion (natural-con-
vection) of a constant property fluid across a
finite-size, horizontal plate are
X-momentum

du ou 10p 0*u  0%u\ (B.1)
“ax "oy T T (a— 5;)
y-momentum
ua—v+va—u= _18_p+v<@+@)
ox  dy p oy ox?  0y?

—gl1-BT-Ty] (B2
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energy (neglecting viscous dissipation of energy)

or oT 0T  *T
ll'é’;“‘l)“é’y‘—d(ﬁ"l’ﬁ) (B3)
continuity
ou ov

The objective of this Appendix is to demonstrate
the conditions under which the above equations
can be simplified by neglecting terms that have a
smaller order-of-magnitude effect on the results
than that of the terms being retained.

If the variables u, v, T, x and y are made non-
dimensional and of order unity by appropriate
reference velocities, temperatures and lengths,
the nondimensional derivatives will also be of
order unity and therefore the influence of each
term in the above equations will depend on the
magnitude of its coefficients. The nondimen-
sional variables are defined as

- X - ¥y - u-_v

x=z,y=g(—),u=;r,u==;:,
_T-T, T-T,
T T,-T, AT,

The quantities x, y and ¢ are obviously of order
unity. Special consideration, however, must be
given to the selection of representative reference
velocities u, and v, so that u and v will also be of
order unity.

Since the mass flow rate in the x-direction
increases from a value of zero at the plate center
to a maximum value at the plate edge (see Fig. 1)
a representative horizontal reference velocity is
the average horizontal velocity of the fluid at the
plate edge. This horizontal reference velocity is
easily obtained by applying a momentum
balance in the x-direction to the fluid located
above the plate and between vertical boundaries
at x = 0 and x = L. If viscous forces are neg-
lected and the net driving force is equal to the
integral of the excess hydrostatic pressure along
the vertical boundary at x = 0 due to the denser
fluid near the plate, an upger limit on the average
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horizontal velocity at the plate edge can be
expressed as

U, = J(gBAT,8,/10). (B.5)

A mass balance applied to the control volume
shown in Fig. 1 yields the following representa-
tive vertical reference velocity

v, = u,00/L . (B.6)

With the nondimensional variables defined in
equations (B.5) and (B.6), the nondimensional
form of equations (B.1)}{B.4) are
X-momentum

NI
0x dy  puldx
3 3 2 - -
10 L ) 0* 2
(@) GG 5] e
Gr/ \d, L) ox ay?
y-momentum
@)Z[ 65+_6v1 1 &
L ox vl pldy
10N [ LN® (6,\* [ Oo\2 0% 0%
" (a) (a“‘) (I) [(‘i) PRl
energy
-09  -0¢ _ 10) L\?
v __ —
“ox oy  \Pr’Gr/ \5,
do 262¢ &
[( ) ax +a—" (B.9)
continuity
ou v
g, == .1
P + 5 0. (B.10)

In the above nondimensional equations all
dependent variables and their derivatives are of
order unity, and the influence of each term
depends on the magnitude of its coefficient. If
(6/L)* < 0-1, and the terms that have an order-
of-magnitude of 0-1 or less are neglected the
above equations can be simplified to the form
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The simplified x- and y-momentum equations
can be combined to yield
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Note that the first terms in equation (B.15)
are of order unity or greater. Since the viscous
term in the momentum equation and the con-
duction term in the energy equation must be of
order unity near the wall, the coefficients

5 (Gr\* .6, (PrZGr>*

L (10) and 7\ 10
must also be of order unity. Therefore if (6,/L)>
< 01, the parameters Gr and GrPr? must be of
order 10° or larger.

These restrictions (Gr and GrPr? > 10%) repre-
sent a lower limit on the conditions under which
equations (B.13)+(B.15) adequately describe the
behavior of the free-convection boundary layer
on a horizontal plate. Equations (B.13){(B.15)
will more accurately describe the boundary-

layer behavior as Gr and GrPr?> —» oo and the
corresponding boundary-layer depth, é,/L — 0.

Résumé—Le probléme de la convection naturelle bidimensionnelle en régime permanent sur une plague
horizontale isotherme de taille finic est examiné théoriquement dans le cas ou une plaque regarde vers
le haut ou bien une plaque chaude regarde vers le bas. Les équations de la couche limite pour la continuité,
I’énergie et la quantité de mouvement sont résolues en employant une analyse intégrale afin de déterminer
le transport de chaleur a la surface de la plaque. Une part essentielle de cette analyse est 'emploi du concept
ou de la condition que la profondeur de la couche limite au bord de la plaque est égale 3 une profondeur
critique. Les résultats de cette analyse sont en trés bon accord avec ’équation de corrélation expérimentale
existante pour l’air.

NATURLICHE KONVEKTION AN EINER ENDLICHEN WAAGERECHTEN PLATTE

Zusammenfassung—Das Problem der zweidimensionalen, stationiren, freien Konvektion an einer end-

lichen, isothermen, waagerechten Platte wird theoretisch gepriift fiir den Fall, dass eine kalte Seite nach

oben oder eine heisse Seite nach unten gerichtet ist. Die Grenzschichtgleichungen fiir K ontinuitit, Energie

und Impuls werden mit Hilfe einer Integralanalyse geldst um den Wirmeiibergang an der Plattenober-

fliche zu bestimmen. Ein wesentlicher Teil dieser Analyse besteht in der Bedingung dass die Grenzschicht-

tiefe am Plattenrand gleich einer kritischen Tiefe ist. Die Ergebnisse dieser Analyse stimmen sehr gut
mit bestehenden experimentellen Korrelationsgleichungen fiir Luft iiberein.

AnHoTAIMA—3aNaya  IByMepPHOH CTAUMOHAPHON eCcTeCTBEHHOH KOHBEKUUM M3y4aeTcA
TEeOpeTHYEeCKU [JIA CIy4as ropusoHTAIbLHON MB0TEPMUYECKOH XOIOLHON NIACTHHH KOHEUHBIX
PasaMepoB, pAaCIHOJIOMEHHON BBEpPXY, M AHAIOTHYHOM ropsvell NIIACTHHH, PACIOJIOKEHHON
BHUBY. TenmroofMen HA MOBEPXHOCTH NMJIACTHHHL ONPENENAINCA TyTeM PellleHus A NorpaHud-
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HOTO CJIOA METORAMH WHTErpajibHEIX npeofpaszoBanuil ypaBHeHU HEPA3PHBHOCTH, DHEPTHH

1 KOJIMYeCTBA ABIKEHNA. DTa 387344 pellieHa NIPU TOM CYIUECTBEHHOM YCIOBHMH, YTO TOMIMHA

MOTPAaHUYHOTO CJIOA HA KPAIo IUIACTMHHE DPaBHA KpUTHYeCKofl. PesynpTathl aHammsa oveHb

XOpOUIO COTJACYIOTCH ¢ MMEIOIMNMUCA SKCHeDUMEeHTANLHHMY 00O0IICHHBIMH YDABHEHUAMU
ILTA BO3AyXA.



